
On some classes of optimal control problems
governed by elliptic PDEs

Alexis de Villeroché
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1 Introduction

We consider optimal control problems for a general integral cost functional, gov-
erned by an elliptic PDE over a bounded domain Ω of Rd.

Statement of the problem - For m in a given class M of admissible controls
that will be specified later, we define the state um as the unique solution in W 1,p

0 (Ω)
of the state equation {

−∆pu+m |u|p−2u = f in Ω

u = 0 on ∂Ω.
(1)

where p > 1 and f is some fixed non negative function in W−1,p(Ω).
Given um, we define the cost function that we wish to optimize over the class M

J(m) =

∫
Ω

j(x, um,∇um) dx

where j is a general integrand whose properties will also be discussed later. We
consider two types of optimization problems: either the minimization and the max-
imization of J . These problems read as

min
m∈M

J(m) and max
m∈M

J(m).

The goal is to study the properties of the optimizer m∗.

Classes of admissible controls - We consider two different cases for the class
M of controls m.

In the most general case, we only want to assume m to be non negative and that
the state equation is well defined in the weak sense, namely,∫

Ω

|∇u|p−2∇u · ∇v dx+
∫
Ω

|u|p−2u vmdx =

∫
Ω

f v dx.
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for all v in the right set of test functions. If we want the class to be as large as
possible, we need to relax it to a suitable class of Borel measures. This class is known
to be the class of capacitary measures, that naturally depends on the exponent p.

After working on an example which shows that the relaxation to the larger class
of capacitary measures is actually necessary, we consider the optimization problems
to some restricted classes of controls:

M =

{
m ∈ L∞(Ω) : α ≤ m ≤ β,

∫
Ω

mdx = V

}
where α and β are two non negative constants, and α|Ω| ≤ V ≤ β|Ω|.

This class of control appears naturally in several questions of distribution of re-
sources, the mass constraint accounts for the fact there is only a finite amount of
resources available, and the bounds account for environmental properties; the upper
bound could be a point of saturation for resources and the lower bound a minimum
requirement.

Properties of the optimizer - As explained before, we want to study the
properties of the optimizer m∗ of our problem.
When we consider the relaxed problem to p-capacitary measures, the first relevant
property is whether m∗ is of finite mass or not.
Then, the questions of regularity arise: is m∗ a function or a general measure, and
how much regularity does it have.

When we work with bounded controls, we will try to understand under which
assumptions the optimizer is of a bang-bang type.

Definition 1. We say that m ∈ L∞(Ω) such that α ≤ m ≤ β has the bang-bang
property if it is of the form

m = (β − α)1E + α,

where E is a Borel subset of Ω.

We will then study the properties of the set E. We will show that in the general
case, E is p-quasi open (see Definition 2 below) and we will look for the cases where
E is open, we will complete the study by trying to determine whether E is of finite
perimeter. Then, the further step would consist in studying the regularity of the set
E; this is usually a very delicate issue that we will not consider here.

Definition 2. p-quasi open set
A set E is said to be p-quasi open if it is a preimage of an open subset of Ω by an
element of W 1,p(Ω).

When p > d, since Sobolev functions are Hölder continuous, p-quasi open set
simply reduce to open sets.
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2 Relaxed problem and p-capacitary measures

The goal of this section is to illustrate the relaxed framework of p-capacitary mea-
sures, that are the most natural objects to consider in our optimization problems.
In the following we use the notion of p-capacity of a set E:

Capp(E) = inf
{∫

|∇u|p + |u|p dx : u ∈ UE

}
,

where UE is the set of all functions u of the Sobolev space H1(Rd) such that u ≥ 1
almost everywhere in a neighborhood of E.
From this we can first define the notion of being p-quasi continuous

Definition 3. A function f on Ω is said to be p-quasi continuous if for every ϵ > 0
there exists a continuous function fϵ such that

Capp
({
x ∈ Ω, f(x) ̸= fϵ(x)

})
< ϵ

We also define the p-capacitary measures which are the Borel measures absolutely
continuous with respect to the p-capacity

Definition 4. p-capacitary measure
A Borel measure µ on Ω, taking its values in [0,+∞], is said to be p-capacitary if
for every Borel set E ⊂ Ω{

Capp(E) = 0 ⇒ µ(E) = 0

µ(E) = inf {µ(A) : A ⊃ E, A p-quasi open} .

Again, when p > d, due to the fact that all nonempty sets have a strictly positive
capacity, p-capacitary measures simply reduce to Borel measures taking their values
in [0,+∞]. On the contrary, when p ≤ d, points and more generally d−2 dimensional
sets have capacity zero; as a consequence, Dirac masses or more generally measures
concentrated on d− 2 dimensional sets, are not p-capacitary measures.

The important result is that any Sobolev function in W 1,p(Ω) has a p-quasi
continuous representative, uniquely defined up to a zero p-capacity set. Then as
explained in [1] we can make sense of a weak solution to (1) uµ for µ a p-capacitary
measure such that∫

Ω

|∇uµ|p−2∇uµ · ∇v dx+
∫
Ω

|uµ|p−2uµ v dµ =

∫
Ω

f v dx.

for all test function v in W 1,p
µ,0(Ω) =

{
v ∈ W 1,p

0 (Ω),

∫
Ω

|v|p dµ <∞
}
. We will then

relax the initial problem by considering weak solution to (1) in this sense.

3 Existence

In this section we look at the existence of optimal solutions, in the different cases,
for our problems. We begin by stating two general properties that do not depend
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on the class M of controls that we consider. For the sake of clearness we will only
work with the min problem here even though all the results are of course adaptable
for the max problem

The first property just states that the weak max principle holds.

Proposition 1. For a given control m in M, the state um satisfies the weak max
principle and is non negative.

Proof -The state um can be characterized as the solution of the variational
problem

min
u∈W 1,p

0 (Ω)
Fm(u),

with

Fm(u) =

∫
Ω

(
1

p
|∇u|p + 1

p
m|u|p − fu

)
.

Consider for u ∈ W 1,p
0 (Ω), ũ = max{u, 0} ∈ W 1,p

0 (Ω), then |∇ũ| ≤ |∇u|, |ũ| ≤ |u|
and ũ ≥ u, so, since the function f and the control m are non negative, ũ is a better
candidate than u to the problem, hence um must be non negative.

The second property gives a partial order on the set of states; it was proven in
[1] Proposition 3.3 and we only state here the first part of the property.

Proposition 2. The map m 7→ um is decreasing, namely,

um1 ≤ um2 whenever m1 ≥ m2.

Proof - This proof is directly taken from [1]. For simplicity of notations, here
we write ui = umi

and the corresponding functional Fi = Fmi
. As for the max

principle, the proof uses the variational formulation of the state equation.
If we prove that F2(u1∧u2) ≤ F2(u2), by minimality and uniqueness, we would have
u1 ∧ u2 = u2 concluding the proof. Noticing that

Fi(u1 ∧ u2) + Fi(u1 ∨ u2) = Fi(u2) + Fi(u1),

it is equivalent to prove F2(u1) ≤ F2(u1 ∨ u2). Rewriting F2 in term of F1, it is
equivalent to showing

F1(u1) ≤ F1(u1 ∨ u2) +
∫
Ω

1

p
(|u1 ∨ u2|p − |u1|p) (m2 −m1).

This last inequality is true since u1 minimizes F1 and the integral is non negative
by the hypothesis on m1 and m2.

Remark - In particular from these two properties, we deduce that for all m ∈
M, um must satisfy the inequalities 0 ≤ um ≤ u0 with u0 the solution in W 1,p

0 (Ω) of

−∆pu = f.
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When M is the set of p-capacitary measures, we prove that the set of solutions
um is compact for the weak W 1,p convergence so we only need mild assumptions on
the integrand of the cost j, which only needs to provide the lower semicontinuity to
the integral functional. It is then enough to require that j(x, s, z) be measurable in
x, lower semicontinuous in (s, z) and convex in z.

Let’s write the state equation,

−∆pum +m|um|p−2um = f.

Since by Proposition 2, the term m|um|p−2um ≥ 0, it implies

−∆pum ≤ f.

Now, considering

E =
{
u ∈ W 1,p

0 (Ω) : −∆pu ≤ f, 0 ≤ u ≤ u0
}
,

we have the following compactness result.

Theorem 1. If p > d and f ∈ L1(Ω), or if p ≤ d and f ∈ Lp∗/(p∗−1)(Ω) with
p∗ = pd/(d − p) (any p∗ < +∞ if p = d), then the set E is compact for the weak
W 1,p

0 (Ω) convergence.

Proof - If u ∈ E the p-Laplacian condition implies∫
Ω

|∇u|p dx ≤
∫
Ω

fu dx,

then applying Hölder inequality, if p < d,∫
Ω

|∇u|p ≤
(∫

Ω

f
p∗

p∗−1

) p∗−1
p∗

(∫
Ω

|u|p∗
) 1

p∗

≤
(∫

Ω

f
p∗

p∗−1

) p∗−1
p∗

(∫
Ω

|u0|p
∗
) 1

p∗

,

here, the fact that u and u0 are in L
p∗(Ω) is a consequence of the Sobolev embedding

theorem. The second inequality is true because 0 ≤ u ≤ u0.

If p > d, u and u0 are Holder continuous on Ω and since they are null on the
boundary, they are both continuous on Ω̄ , then they are necessarily bounded on Ω
with ∥u∥∞ ≤ ∥u0∥∞, then we obtain the inequality∫

Ω

|∇u|p dx ≤ ∥u0∥∞
∫
Ω

f dx

Then, in both cases, since E is closed, it is compact for the weak W 1,p
0 (Ω) conver-

gence.

We deduce form this result that up to extraction, all sequence of states (um)
must converge in E. But actually, if one takes u ∈ E,

µu =


f +∆pu

|u|p−2u
if u > 0,

+∞ if u = 0,
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is a p-capacitary measure. Then, if (mn) is an optimizing sequence, up to extraction
(umn) converges weakly to u and we can construct µu a p-capacitary measure such
that u = uµu . So we have proven that the set of states is compact for the weak
convergence and we only need the asssumptions described at the beginning on j to
have existence.

Remark - This approach of the problem is really interesting because we forget
about the structure of the control and only consider the set of states as a subset
of W 1,p

0 (Ω) with explicit constraints. The problem can then be viewed as standard
variational problem and, more importantly, solved as such.

This result is even better in the case p = 2 because then by linearity, the condition
on the Laplacian becomes

∆(um − u0) ≥ 0.

So, the variational problem that we consider can be viewed as a problem on the set
of sub-harmonic functions v null on the boundary and bounded below by −u0. More
precisely, setting v = um−u0 we have that our problem reduces to the optimization
of the functional

J̃(v) =

∫
Ω

j
(
x, v + u0(x),∇v +∇u0(x)

)
dx

on the class
{
v : ∆v ≥ 0, −u0 ≤ v ≤ 0

}
. In particular, in the one-dimensional

case, the class above is the class of convex functions
{
v convex : −u0 ≤ v ≤ 0

}
.

One may also notice that to prove this existence result, we have proven that
the class of capacitary measures is compact for the γp convergence introduced in
[1] (Definition 3.4) namely a sequence (mk) of p-capacitary measures is said to γp
converge to m if the sequence of associated states (umk

) converges strongly in Lp to
um.

Now, when we work with the class of bounded control functions α ≤ m ≤ β,
we can actually have the exact same approach the Proposition 2 imposes that the
admissible states live in

Ẽ =
{
u ∈ W 1,p

0 (Ω) : f − β|u|p−2u− β −∆pu ≤ f − α|u|p−2u, uβ ≤ u ≤ uα
}
.

Since Ẽ is a closed subset of E, it is of course also compact for the weak W 1,p
0 (Ω)

convergence. And if one takes an element u of Ẽ, it is bounded from below by uβ
which is positive on Ω. Then, as before, considering

µu =
f +∆pu

|u|p−2u
,

the bounds on the p-Laplacian of u immediately imply α ≤ µu ≤ β. Then, once
again, the set of admissible states is compact for the weak W 1,p

0 (Ω) convergence and
we need the same assumptions on the integrand j to have existence of an optimizer.
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4 Dimension 1

4.1 Example f = 1

As a first example, we will work in dimension 1 with p = 2 optimizing over the set
of 2-capacitary measures that coincide with the Borel measures in this case. For
the sake of simplicity, we choose f = 1. In this setting, the state equation is the
following {

−u′′ +mu = 1, in ]− 1, 1[,
u(−1) = u(1) = 0.

(2)

Taking c a constant, we define the functional J for a given m

J(m) =

∫ 1

−1

|um − c|2 .

And we want to solve
min
m

J(m).

We will use the convex formulation introduced in the previous section to prove the
following theorem

Theorem 2. The functional J admits a unique minimizer m∗. And the dependence
on c is such that
- if c ≤ 0, m∗ = +∞,

- if 0 < c <
1

4
,

m∗ =
1

c
1]−γ,γ[ +

√
c

2
(δ−γ + δγ) ,

where γ = 1− 2
√
c,

- if
1

4
≤ c <

5

12
,

m∗ = 3

(
5

12
− c

)
δ0,

- if c ≥ 5

12
, m∗ = 0.

Proof

The first point is trivial, if c ≤ 0, the minimizing state is of course um∗ = 0 and
m∗ = +∞. Remember that by Proposition 2, we know that 0 ≤ um ≤ u0, with

u0(x) = −x
2 − 1

2

by direct calculation. The last point of the theorem is just a direct consequence of

this inequality when c ≥ 1

2
since supu0 =

1

2
.
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The main part of the theorem is to prove the other points (0 < c < 1/2), to do
so we will rewrite the problem in the convex formulation. For a given control m,
the function ϕ = um − u0 is convex, satisfying −u0 ≤ ϕ ≤ 0 and ϕ(−1) = ϕ(1) = 0.
And as explained for a given convex function ψ satisfying these properties, we can
construct back an admissible control m,

m =


ψ′′

ψ + u0
if ψ ̸= −u0,

+∞ if ψ = −u0.

Then our problem rewrites equivalently as

min
ϕ
J(ϕ),

with

J(ϕ) =

∫ 1

−1

∣∣∣∣ϕ(x)− (
c+

x2 − 1

2

)∣∣∣∣2 ,
where the functions ϕ are taken convex satisfying ϕ(−1) = ϕ(1) = 0 and ϕ ≥ −u0.
Note that in this setting the fact that ϕ ≤ 0 is contained in the convexity and its
value on the boundary.

Uniqueness- We can note that the functional is strictly convex defined on a
convex set so the minimizer is unique. It only remains to prove that the solution is
of the expected form.

Our first step is to restrain the problem to two types of symmetric functions,

vy(x) =


a(y) (1 + x) for x ∈ [−1,−y]
x2 − 1

2
+ c for x ∈ [−y, y]

a(y) (1− x) for x ∈ [y, 1]

here, for a given y, a(y) is explicitly given by the continuity of vy and we choose y
chosen such that vy stays convex, and,

wh(x) =

{
h (1 + x) for x ∈ [−1, 0]
h (1− x) for x ∈ [0, 1]

with c− 1

2
≤ h ≤ 0.

Figure 1: example of functions vy and wh

8



Then, we will derive the different conditions en c that give the expression of the
minimizer

Reduction of the problem - Consider a generic admissible function ϕ, if we
can find a better candidate of either of the previous forms on each halves of the
space, namely ψr and ψl such that∫ 1

0

∣∣∣∣ϕ(x)− (
x2 − 1

2
+ c

)∣∣∣∣2 dx− ∫ 1

0

∣∣∣∣ψr(x)−
(
x2 − 1

2
+ c

)∣∣∣∣2 dx ≥ 0∫ 0

−1

∣∣∣∣ϕ(x)− (
x2 − 1

2
+ c

)∣∣∣∣2 dx− ∫ 0

−1

∣∣∣∣ψl(x)−
(
x2 − 1

2
+ c

)∣∣∣∣2 dx ≥ 0

Then
J(ϕ) ≥ min{J(ψl), J(ψr)}

By symmetry of the problem we only need to prove the existence of ψr.

In the following we need to define two constants α = 1−
√
2c and β = 1− 2c.

The constant α is the smaller root of the polynomial

X2 − 2X + 1− 2c,

and is such that

v(x) = vα(x) =


−α(x+ 1) for x ∈ [−1,−α]
x2 − 1

2
+ c for x ∈ [−α, α]

α(x− 1) for x ∈ [α, 1]

is C1.
The constant β solves

β2 − 1

2
+ c =

(
1

2
− c

)
(β − 1),

it is the x-coordinate of the right intersection point between v0 and −u0.

We will denote by Jr(ϕ) =

∫ 1

0

∣∣∣∣ϕ(x)− (
x2 − 1

2
+ c

)∣∣∣∣2 dx the cost of ϕ on [0, 1].

Take ϕ an admissible convex function, and define x0 such that

ϕ(x0) =
x0

2 − 1

2
+ c

and ∀x > x0, ϕ(x) <
x2 − 1

2
+ c.

If there is no such x0 or x0 ≤ α, then ϕ(α) ≤ α2 − 1

2
+ c, and by convexity of ϕ,

∀x ∈ [α, 1],

ϕ(x) ≤ ϕ(α)

1− α
(1− x)

≤ α (1− x)
≤ v(x)
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by definition of α and v, then Jr(ϕ) ≥ Jr(v).

If x0 ≥ α, by convexity of ϕ,

∀x ≥ x0, ϕ(x) ≤ ϕ(x0)

1− x0
(1− x)

∀x < x0 ϕ(x) ≥ ϕ(x0)

1− x0
(1− x).

By convexity of x 7→ x2 − 1

2
+ c,

∀x ≥ x0,
ϕ(x0)

1− x0
(1− x) ≤ x2 − 1

2
+ c,

if x0 ≥ β, the convexity also imposes

∀x ≤ x0,
ϕ(x0)

1− x0
(1− x) ≥ x2 − 1

2
+ c,

then, we deduce Jr(ϕ) ≥ Jr(w), with

w(x) =


ϕ(x0)

1− x0
(1 + x) for x ∈ [−1, 0]

ϕ(x0)

1− x0
(1− x) for x ∈ [0, 1]

If x0 < β, there exists a positive y ̸= x0 such that

ϕ(x0)

1− x0
(1− y) =

y2 − 1

2
+ c,
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then the convexity imposes

∀x ∈ [y, x0],
ϕ(x0)

1− x0
(1− x) ≥ x2 − 1

2
+ c,

then Jr(ϕ) ≥ Jr(w), with

w(x) =



ϕ(x0)

1− x0
(1− x) for x ∈ [−1,−y]

x2 − 1

2
+ c for x ∈ [−y, y]

ϕ(x0)

1− x0
(1− x) for x ∈ [y, 1].

It remains to prove that w is convex, to do so we just need to check that y ≤
− ϕ(x0)

1− x0
.

− ϕ(x0)

1− x0
=
ϕ(x0)− ϕ(x0)

1−x0
(1− y)

x0 − y

=

x0
2−1
2

+ c−
(

y2−1
2

+ c
)

x0 − y
by definition of x0 and y

=
x0 + y

2
≥ y since x0 ≥ y.

We have now proven that we can restrain our search for a minimizer of the forms
vy of wh.

Computation of the explicit minimizer - Define for h ∈ [c− 1/2, 0]

F (h) = Jr(wh) =
1

2
J(wh).

Then we can directly compute

F (h) = h2
∫ 1

0

(1− x)2dx− h

∫ 1

0

(1− x)(x2 + 2c− 1)dx+

∫ 1

0

(
x2 − 1

2
+ c

)2

dx

=
1

3
h2 −

(
c− 5

12

)
h+D.
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The minimum of this polynomial is obtained for h∗ =
3

2

(
c− 5

12

)
we deduce that

there are several cases,
if c < 1/4,, h∗ < c− 1/2 and the best candidate is wc−1/2 = v0,
if 1/4 ≤ c ≤ 5/12, h∗ is inside the domain and the best candidate is wh∗ ,
and if 5/12 < c, h∗ is positive and the best candidate is w0 = 0.

Now, we need to compare these possible candidates with the functions of the
form vy. By definition,

vy(x) =


a(y) (1 + x) for x ∈ [−1,−y]
x2 − 1

2
+ c for x ∈ [−y, y]

a(y) (1− x) for x ∈ [y, 1]

Where y is chosen so that vy is convex, which imposes the two following conditions,

y ≤ −a(y)
y2 − 1

2
+ c = a(y) (1− y),

which put together imply
y2 − 2y + 1− 2c ≥ 0.

Since α is the smaller root of this polynomial, the two conditions rewrite

0 ≤ y ≤ α

a(y) =
y2 − 1 + 2c

2 (1− y)
.

As previously, we define

F̃ (y) = Jd(vy) =
1

2
J(vy),

and by definition,

F̃ (y) =

∫ 1

y

∣∣∣∣a(y)(1− x)−
(
x2 − 1

2
+ c

)∣∣∣∣2 dx.
We can derive F̃ ,

˜F ′(y) = −
∣∣∣∣a(y)(1− y)−

(
y2 − 1

2
+ c

)∣∣∣∣2+2a′(y)

∫ 1

y

(1−x)
(
a(y)(1− x)−

(
x2 − 1

2
+ c

))
.

By definition of a, the first term is null and

a′(y) =
1

1− y
(y + a(y)).

Then,

F̃ ′(y) = 2 a′(y)

(
1

3
a(y) (1− y)3 − 1

4
(2c− 1) (1− y)2 − 1

6
(1− y3) +

1

8
(1− y4)

)
=

1

12
a′(y) (1− y) ((1− y)3 − 4c(1− y))

=
−1

24
(y2 − 2y + 1− 2c) (y − (1 + 2

√
c)) (y − (1− 2

√
c)).
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the first factor has two roots α and the other being larger than 1 so it is non negative
for y ∈ [0, α] and the second factor stays negative so this derivative is of the sign of

(y − (1− 2
√
c)) and there are two cases, If c <

1

4
then the best candidate is v1−2

√
c

and if c ≥ 1

4
, the candidate becomes v0.

Finally, regrouping the two sets of results, we have found the explicit minimizer
depending on the value of c.

It remains to compute the associated optimal m∗ in the different cases,

- if c <
1

4
, introducing γ = 1− 2

√
c,

m∗ =
w′′

γ

wγ − x2−1
2

,

then we can write

m∗ = 1]−γ,γ[
1

c
+

√
c

2
(δ−γ + δγ)

- if
1

4
≤ c <

5

12
,

m∗ = 3

(
5

12
− c

)
δ0.

- if c ≥ 5

12
, m∗ = 0.

4.2 Generalisation to generic function f

The previous result is actually exactly the same for a generic symmetric non negative
L2 function f . The proof works exactly the same way, first the reduction then the
computation of the explicit minimizer, the main difference is in this computation we
cannot express the explicit solution but we can show its existence and how to find it.

The precise setting is the following, consider for f ∈ L2(] − 1, 1[) non negative,
the state equation {

−u′′ +mu = f, in ]− 1, 1[,
u(−1) = u(1) = 0,

and for c a real number, consider the functional

Jf (m) =

∫ 1

−1

|um − c|2.

Then, the following theorem holds

Theorem 3. If f is symmetric, the functional Jf admits a unique minimizer m∗.
And the dependence on c is such that
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- if c ≤ 0, m∗ = +∞,
- if 0 < c < γ − λ,

m∗ =
f

c
1]−y∗,y∗[ + C(y∗) (δ−y∗ + δy∗) ,

where y∗ is the smallest solution on [0, 1] of∫ 1

y

(1− x) f(x) dx−
∫ 1

y

(1− x)3 f(x) dx = c

and,

C(y∗) =

∫ 1

y∗

1− x

1− y∗
f(x) dx,

- if γ − λ ≤ c < γ − λ

3
,

m∗ = 3

((
γ − λ

3

)
− c

)
δ0,

- if c ≥ γ − λ

3
, m∗ = 0.

With,

γ =

∫ 1

0

(1− x) f(x) dx and λ =

∫ 1

0

(1− x)3 f(x) dx.

Proof - the proof is basically the same as the previous one, we just need to
change the expression of u0. One can check that

u0(x) = (1− x)

∫ x

0

f(y) dy +

∫ 1

x

(1− y) f(y) dy.

From this expression, appears γ = supu0 = u0(0), it will play the role of
1

2
in

the previous demonstration. With this different expression, we must redefine the
functions vy accordingly, namely

vy(x) =


a(y) (1 + x) for x ∈ [−1,−y]
c− u0(x) for x ∈ [−y, y]
a(y) (1− x) for x ∈ [y, 1]

with a(y) =
c− u0(y)

1− y
. As before, one can define α as the smaller positive solution

of a(y) = u′0(y), there is a solution because since f is L2, u0 is H2 which imply C1

in dimension 1. As before, vy will be well defined if y ≤ α.
With this new setting, using the convex formulation, one can make the same reduc-
tion as before with the same cases.
Then, as previously on can define, for c− γ ≤ h ≤ 0,

F (h) =
1

3
h2 − 2

∫ 1

0

(1− x)(c− u0(x))dx+D(u0)

14



With the minimality of the function F obtained for

h∗ = 3

∫ 1

0

(1− x)(c− u0(x))dx,

which after two integration by parts can be expressed as

h∗ =
3

2

(
c−

(
γ − λ

3

))
.

Again as previously, one can define, for 0 ≤ y ≤ α, F̃ (y), after much computation,
we find that the derivative F̃ ′ of F̃ satisfies

F̃ ′(y) = −1

3
a′(y)(1− y)2(c− h(y)).

with

h(y) =

∫ 1

y

(1− x)f(x) dx− 1

(1− y)2

∫ 1

y

(1− x)3f(x) dx.

One can actually check that, h is decreasing, h(0) = γ − λ and, h(α) = c −
1

(1− α)2

∫ 1

α

(1 − x)3f(x) dx. Then, since a′(y) is negative, if c ≥ γ − λ, the min-

imality of the function F̃ is obtained for y∗ = 0, conversely it is obtained for y∗

satisfying 0 < y∗ < α and h(y∗) = c.
Finally, putting all the pieces together one can finish the proof.

Remarks The general remark that should be made about this result is that
in the generic case, except when c in non positive, the total mass stays finite and
except when it hits 0 the minimizer is never a function, So clearly, there is no hope
of finding bang-bang minimizer to this problem.

The obvious question is how do we go from here to non symmetric functions f .
The complication is that we will not be able to reduce the problem to symmetric
functions but rather to functions that are a mix of the two forms wh and vy on
either side of the minimal point of c− u0. Yet, we can expect there will still be the
same type range on c that appear. For small positive c there should be two dirac

measures one on each side of the minimal point with
f

c
in between , then probably

that a new range will appear when one of the dirac arrives first at the minimal point
and finally the two dirac combine and then when c gets above supu0 the solution
will of course be 0.

This scheme of proof can probably also be adapted to functionals of the form

J(m) =

∫ 1

−1

|um − g|2,

with g ∈ H2 symmetric and such that g − u0 stays convex and is not non negative.
The reduction should still hold because it only uses the fact c − u0 is convex and
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C1 and then there should be conditions on g′′ that will describe the shape of the
minimizer.

Finally, this proof is not transferable to higher dimension because the equivalent
variational problem would be with subharmonic functions instead of convex and the
reduction as it is would not work especially if the domain Ω is too pathological.

5 Energy functional and Bang-Bang property

In this section we go back to the problem in multiple dimensions and we consider
the energy functional for the p-laplacian problem

J(m) =
1− p

p

∫
Ω

fum,

Where um solves the variational formulation of the state equation

min
u∈W 1,p

0 (Ω)

∫
Ω

(
|∇u|p

p
− fu+m

|u|p

p

)
.

Here, we consider the class of controls m for 0 ≤ α ≤ β,

M =

{
m ∈ L∞(Ω)

∣∣∣∣α ≤ m ≤ β, and

∫
Ω

m = V

}
,

with V chosen so that the set is not empty.
In order to simplify this class, we drop the mass constraint by adding a Lagrange
multiplier in the functional

J(m) =
1− p

p

∫
Ω

fum − λ

∫
Ω

m.

In order to have a more general result, we replace this multiplier by an integral cost
c which is not necessarily linear. And the functional then becomes

J(m) =
1− p

p

∫
Ω

fum −
∫
Ω

c(x,m).

We are interested in both the minimum problem and the maximum problem, namely

min /maxα≤m≤βJ(m).

with 0 ≤ α ≤ β. Since at the minimum um, we have

1− p

p

∫
Ω

fum =

∫
Ω

(
|∇um|p

p
− fu+m

|um|p

p

)
,

we can separate both variables in our problem which rewrites

min /maxα≤m≤β min
u∈W 1,p

0 (Ω)

∫
Ω

(
|∇u|p

p
− fu+m

|u|p

p
− c(x,m)

)
.
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Now, in the case where we consider the minimum problem we can exchange the two
min operators and we are left with

min
u∈W 1,p

0 (Ω)

∫
Ω

(
|∇u|p

p
− fu+ min

α≤m≤β

{
m
|u|p

p
− c(x,m)

})
.

And in the case of the maximum problem, if m 7→ c(x,m) is convex we can make
the same operation and get

min
u∈W 1,p

0 (Ω)

∫
Ω

(
|∇u|p

p
− fu+ max

α≤m≤β

{
m
|u|p

p
− c(x,m)

})
,

note that this convexity hypothesis still includes the linear case we started with.
This exchange of the max and min operator can be justified by Sion’s minimax the-
orem (see [2]).

There are a few questions that we want to answer. We want to know under
which hypothesis on c do we get the bang-bang property for the optimizer m∗. Then
we want to determine under which conditions the optimal set E is open.

5.1 Hypothesis on c to have the bang-bang property

We wish to establish a criteria on c such that the optimal m is bang-bang for all
u ∈ W 1,p

0 (Ω). We will only do the calculation for the minimisation problem since
they are very similar to the maximisation problem.

We want to find a sufficient and necessary condition on c such that for all non

negative real number u the minimizer of hu(m) =
up

p
mc(m) on α ≤ m ≤ β is in

{α, β}.

Firstly, let’s note that hu(α) ≤ hu(β) if and only if

up

p
≥ c(β)− c(α)

β − α
,

and in that case, we want for all m in [α, β], hu(α) ≤ hu(m), which translates as

up

p
≥ c(m)− c(α)

m− α
,

so in particular if c(β)− c(α) > 0 taking

up

p
=
c(β)− c(α)

β − α
.

We have that c must satisfy for all m

c(β)− c(α)

β − α
≥ c(m)− c(α)

m− α
.
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And if c(β)− c(α) ≤ 0 taking u = 0 we have that c must satisfy for all m

c(m)− c(α)

m− α
≤ 0.

Which rewrites as for all m,

c(m) ≤ max

{
c(α),

c(β)− c(α)

β − α
(m− α) + c(α)

}
.

Now considering the case when c(β)− c(α) > 0, where

up

p
<
c(β)− c(α)

β − α
,

we want to have for all m, hu(m) ≥ hu(β) which rewrites as

up

p
≤ c(β)− c(m)

β −m
.

then in particular, taking the equality for the condition on u, it implies that for all
m

c(β)− c(α)

β − α
≤ c(β)− c(m)

β −m
,

which rewrites as

c(m) ≤ c(β)− c(α)

β − α
(m− α) + c(α)

We have now proven that if for all u the minimizer of hu lies in {α, β} then, c must
satisfy for all m

c(m) ≤ max

{
c(α),

c(β)− c(α)

β − α
(m− α) + c(α)

}
.

We will now prove the converse, we assume that c satisfies this condition.
If c(α) ≥ c(β), since for all m, c(m) ≤ c(α) we immediately get hu(m) ≥ hu(α) for
all u and m.
If c(α) < c(β), the condition is equivalent to both formulation

∀m, c(β)− c(α)

β − α
≥ c(m)− c(α)

m− α
∀m c(β)− c(α)

β − α
≤ c(β)− c(m)

β −m
,

Then, depending on if u is larger or smaller than
c(β)− c(α)

β − α
the minimiser is α or

β. We have now proven the following theorem

Theorem 4. The minimizer of

m 7→ up

p
m− c(m)
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in [α, β] lies in {α, β} for all non negative u if and only if c satisfies

∀m, c(m) ≤ max

{
c(α),

c(β)− c(α)

β − α
(m− α) + c(α)

}
.

And the minimizer is α if
up

p
≥ c(β)− c(α)

β − α
,

and β otherwise.

In a similar fashion one can derive the criteria for the maximization problem the
proof works exactly the same inverting the inequalities

Theorem 5. The maximizer of

m 7→ up

p
m− c(m)

in [α, β] lies in {α, β} for all non negative u if and only if c satisfies

∀m, c(m) ≥ min

{
c(β),

c(β)− c(α)

β − α
(m− α) + c(α)

}
.

And the maximizer is α if
up

p
≥ c(β)− c(α)

β − α
,

and β otherwise.

Then from both of these criteria we get that the optimum function m∗ is bang-
bang if and only if the cost satisfies the criteria almost everywhere on Ω. And then
for a given u ∈ W 1,p

0 (Ω) the optimal function m∗ is given by

m∗ = (β − α)1E + α

where, if we consider the minimum problem,

E =

{
x ∈ Ω

∣∣∣∣ |u(x)|pp
<
c(x, β)− c(x, α)

β − α

}
,

and for the maximum problem

E =

{
x ∈ Ω

∣∣∣∣ |u(x)|pp
>
c(x, β)− c(x, α)

β − α

}
.

In both cases the optimum value is then

h|u|(m
∗) = ((β − α)1E + α)

|u|p

p
− c (x, (β − α)1E + α)

= ((β − α)1E + α)
|u|p

p
− (1E(c(x, β)− c(α)) + c(x, α))

= (β − α)1E

(
|u(x)|p

p
− c(x, β)− c(x, α)

β − α

)
+ α

|u(x)|p

p
− c(x, α).
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What is interesting in this formulation, is that not only did we get rid of the depen-
dence on m as we wished but the only relevant property of c is the slope of its cord
from α to β, since the set E only depends on this slope, and we see here that we can
consider that c(x, α) = 0 because it will not participate in the minimisation over u.
Then, we have actually shown even though we tried to generalize the problem, the
only relevant cost on m is the linear cost.
Finally we have reduced the general class of problems to two problems depending
on if we take the max or the min

min
u∈W 1,p

0 (Ω)

∫
Ω

(
|∇u|p

p
− fu+ α

|u|p

p
± (β − α)

(
|u|p

p
− λ

)
±

)
,

where λ is an integrable not non positive function in Ω. In this formulation the set
that interests us is hidden in the positive or negative part and that’s why we add
this assumption on λ otherwise we would have E = Ω or E = ∅. Note that E is
necessarily p-quasi open.

5.2 Open minimizing sets

We want to prove that under reasonable assumptions, the optimal solution u of each
problem

min
u∈W 1,p

0 (Ω)

∫
Ω

(
|∇u|p

p
− fu+ α

|u|p

p
± (β − α)

(
|u|p

p
− λ

)
±

)
,

is continuous which will imply that the optimal set that we found is an open subset
of Ω The first essential assumption is that λ is continuous otherwise this approach
would not be relevant.
In order to show the continuity we will actually prove that the solution is C0,α. In
the case where p > d, the result is trivial and directly follows from the Sobolev
embedding theorem. If we assume p ≤ d, we need to use a theorem proven by
Giaquinta and Giusti [3] that we summarize below for the sake of completeness.

Theorem 6. Let ũ be a solution of the problem

min

{∫
Ω

h(x, u,∇u)dx : u ∈ W 1,p
0 (Ω)

}
where the integrand h satisfies the condition

c (|z|p − b(x)|s|γ − g(x)) ≤ h(x, s, z) ≤ C (|z|p + b(x)|s|γ + g(x))

for all x, s, z, where p < 1, 0 ≤ c ≤ C, p ≤ γ ≤ p∗, b ∈ Lq
loc(Ω), g ∈ Lσ

loc(Ω), with
σ > d/p and q > p∗/(p∗ − γ).
Then, ũ is locally Hôlder continuous in Ω.

In our case,

h(x, s, z) =
|z|p

p
− fs+ α

|s|p

p
± (β − α)

(
|s|p

p
− λ

)
±
,
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which satisfies

1

p

(
|z|p − h̃(x, s)

)
≤ h(x, s, z) ≤ 1

p

(
|z|ph̃(x, s)

)
with

h̃(x, s) = β|s|p + d− p

d
|s|p∗ + (β − α)|λ|+ d(p− 1) + p

d
f

p∗
p∗−1

and noticing that for all non negative x, xp < xp
∗
+ 1, actually it implies

h̃(x, s) ≤
(
β +

d− p

d

)
|s|p∗ + β + (β − α)|λ|+ d(p− 1) + p

d
f

p∗
p∗−1 .

Since we supposed λ to be continuous, we just need to have f
p∗

p∗−1 ∈ Lσ
loc(Ω) with

σ > d/p, so we need f in Lq with q >
d2

d(p− 1) + p
.

This result is summarized in the following theorem

Theorem 7. If p ≤ d and f ∈ Lq with q >
d2

d(p− 1) + p
, then the solution to each

of the problems

min
u∈W 1,p

0 (Ω)

∫
Ω

(
|∇u|p

p
− fu+ α

|u|p

p
± (β − α)

(
|u|p

p
− λ

)
±

)
,

is locally Holder continuous

As a direct consequence the optimal set solution of the original min or max
problem is open.

5.3 Dimension 1

To have an example we want to compute the optimal set in dimension 1, for sim-
plicity, we will solve the problem with f = 1, α = 0, β = 1, p = 2 and λ constant.

Minimization -We first solve the problem originated form the minimization
problem, it reads

min
u∈H1(Ω)

∫ 1

−1

(
u′2

2
− u+ 1E(u)

(
u2

2
− λ

))
,

with E(u) = {u <
√
2λ} and λ a non negative real number. The solution u∗ to the

problem must satisfy the Euler Lagrange equation −u′′ + u = 1 if u <
√
2λ

−u′′ = 1 else
u(−1) = u(1) = 0.

(3)

This equation imposes that if ū is a solution in H1 then ū′′ is in L2 which imply
that we look for a solution in C1(] − 1, 1[). We know that E(u) is an open subset
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of [−1, 1], so it is a union of open intervals. Also since −1 and 1 are zeros of u,
either E includes at least two intervals, one of the form [−1, a[ and the other of the

form ]b, 1] with a < b, such that u(a) = u(b) =
√
2λ and for all x ∈ [−1, a[∪]b, 1],

u(x) <
√
2λ or if there is no such a and b then E = [−1, 1].

We will try to construct solutions of Euler Lagrange where E ̸= [−1, 1]. Take a < b,
we want to find a solution wa,b such that [−1, a[ and ]b, 1] are included in E and

wa,b(a) = wa,b(b) =
√
2λ, by symmetry of the problem we can suppose that a ≤ 0.

On [−1, a[, since it is a solution to (3), wa,b must satisfy

wa,b(x) = (
√
2λ− 1)

sh(1 + x)

sh(1 + a)
− sh(a− x)

sh(1 + a)
+ 1,

and on ]b, 1], it must satisfy

wa,b(x) = (
√
2λ− 1)

sh(1− x)

sh(1− b)
− sh(x− b)

sh(1− b)
+ 1.

The condition [−1, a[∪]b, 1] ⊂ E (wa,b) is equivalent to w
′
a,b(a

−) < 0 and w′
a,b(b

+) <

0. If
√
2λ ≥ 1 this condition is trivial and if

√
2λ < 1 this condition is equivalent to

ch(1 + a) <
1

1−
√
2λ

and ch(1− b) <
1

1−
√
2λ
,

which rewrites for A(λ) = argch

(
1

1−
√
2λ

)
,

a < 1− A(λ) and b > 1− A(λ).

Between a and b, either wa,b is always larger than
√
2λ and it satisfies on [a, b]

wa,b(x) = −x
2

2
+
a+ b

2
x− ab

2
+
√
2λ,

or there is at least an other interval ]c, d[ such that wa,b(c) = wa,b(d) =
√
2λ and

wa,b(x) <
√
2λ in between. If there is such an interval, necessarily, on ]c, d[, wa,b

must satisfy

wa,b(x) = (
√
2λ− 1)

ch
(
x− c+d

2

)
ch

(
d−c
2

) + 1.

Here we see that if
√
2λ < 1, such an interval cannot exist and E (wa,b) = [−1, a[∪]b, 1].

We will tackle this case first,

If
√
2λ < 1, necessarily, wa,b is of the form

wa,b(x) =


(
√
2λ− 1)

sh(1 + x)

sh(1 + a)
− sh(a− x)

sh(1 + a)
+ 1 if x ∈ [−1, a[

−x
2

2
+
a+ b

2
x− ab

2
+
√
2λ if x ∈ [a, b]

(
√
2λ− 1)

sh(1− x)

sh(1− b)
− sh(x− b)

sh(1− b)
+ 1 if x ∈]b.1]
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The C1 conditions is equivalent to

(
√
2λ− 1)ch(1 + a) + 1

sh(1 + a)
=

(
√
2λ− 1)ch(1− b) + 1

sh(1− b)
=
b− a

2
.

Defining h the function on [1− A(λ), 1] such that

h(b) =
(
√
2λ− 1)ch(1− b) + 1

sh(1− b)
,

this function is strictly increasing, so for a fixed a the only b satisfying the first part of
the C1 condition is b = −a. On can check that actually, the function h̃ : b 7→ h(b)−b
is also increasing and goes to ∞ in 1, and h̃(1 − A(λ)) = A(λ) − 1. In conclusion,

if 1 >
√
2λ ≥ 1− 1

ch(1)
, there is no such solution and the only solution is

u∗ = 1− ch(x)

ch(1)
,

and the optimal m∗ to the original minimization problem is m∗ = 1.

If
√
2λ < 1− 1

ch(1)
, the only solution is w−β.,β, for β solving

(
√
2λ− 1)ch(1− β) + 1

sh(1− β)
= β,

And the optimal set E∗ is then [−1,−β[∪]β, 1].
If
√
2λ ≥ 1, wa,b could behave in different ways between a ad b but we know that

in any case, w′
a,b(a

+) ≤ b− a

2
≤ 1− a

2
. Then the C1 condition imposes

1

sh(1 + a)

(
(
√
2λ− 1)ch(1 + a) + 1

)
= w′

a,b(a
+) ≤ 1− a

2
.

Consider the function g in −1 ≤ a ≤ 0 defined by

g(a) =
1

sh(1 + a)

(
(
√
2λ− 1)ch(1 + a) + 1

)
+
a

2

it is decreasing and

g(0) =
1

sh(1)

(
(
√
2λ− 1)ch(1) + 1

)
≥ 1

sh(1)
>

1

2
.

Then this condition cannot be satisfied so there is no admissible wa,b if
√
2λ ≥ 1

and the optimal m∗ to the original minimization problem is m∗ = 1.

The results are summarized in the following theorem
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Theorem 8. If
√
2λ < 1 − 1

ch(1)
, the optimal set is E∗ = [−1,−β[∪]β, 1], for

0 < β < 1 solving
(
√
2λ− 1)ch(1− β) + 1 = β sh(1− β)

If
√
2λ ≥ 1− 1

ch(1)
, the optimal set is E∗ = [−1.1].

Maximization - We can now take a look at the related problem originated from
the maximization problem.

min
u∈H1(Ω)

∫ 1

−1

(
u′2

2
− u+ 1E(u)

(
u2

2
− λ

))
,

with E(u) = {u >
√
2λ} and λ a non negative real number. Once again we can

work with the Euler Lagrange equation −u′′ + u = 1 if u >
√
2λ

−u′′ = 1 else
u(−1) = u(1) = 0.

(4)

This time the possible solutions are a bit simpler, either the solution is

v∗ =
1− x2

2
,

Or, if
√
2λ < 1, it could be of the form

va,b =



(x+ 1)(a− x)

2
+

√
2λ

1 + a
(x+ 1) if x ∈ [−1, a]

1 + (
√
2λ− 1)

ch
(
x− a+b

2

)
ch

(
b−a
2

) if ]a, b[

(1− x)(x− b)

2
+

√
2λ

1− b
(1− x) if x ∈ [b, 1]

The C1 condition is equivalent to a = −b and b solves

(
√
2λ− 1)

sh(b)

ch(b)
= −

√
2λ

1− b
+

1− b

2

and the validity condition being

√
2λ >

(1− b)2

2
,

to have a solution, we need
√
2λ <

1

2
. So, if

√
2λ ≥ 1

2
, the optimal set E∗ is [−1, 1]

and, if
√
2λ <

1

2
, the optimal set is [−b∗.b∗], with b∗ the only solution to the C1

condition.
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